Two-component signal transduction in Synechocystis sp. PCC 6803 under phosphate limitation: role of acetyl phosphate.

نویسندگان

  • Waraporn Juntarajumnong
  • Julian J Eaton-Rye
  • Aran Incharoensakdi
چکیده

The two-component signal transduction, which typically consists of a histidine kinase and a response regulator, is used by bacterial cells to sense changes in their environment. Previously, the SphS-SphR histidine kinase and response regulator pair of phosphate sensing signal transduction has been identified in Synechocystis sp. PCC 6803. In addition, some response regulators in bacteria have been shown to be cross regulated by low molecular weight phosphorylated compounds in the absence of the cognate histidine kinase. The ability of an endogenous acetyl phosphate to phosphorylate the response regulator, SphR in the absence of the cognate histidine kinase, SphS was therefore tested in Synechocystis sp. PCC 6803. The mutant lacking functional SphS and acetate kinase showed no detectable alkaline phosphatase activity under phosphate-limiting growth conditions. The results suggested that the endogenous acetyl phosphate accumulated inside the mutants could not activate the SphR via phosphorylation. On the other hand, exogenous acetyl phosphate could allow the mutant lacking functional acetate kinase and phosphotransacetylase to grow under phosphate-limiting conditions suggesting the role of acetyl phosphate as an energy source. Reverse transcription PCR demonstrated that the transcripts of acetate kinase and phosphotransacetylase genes in Synechocystis sp. PCC 6803 is upregulated in response to phosphate limitation suggesting the importance of these two enzymes for energy metabolism in Synechocystis cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The SphS-SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in synechocystis.

Living organisms respond to phosphate limitation by expressing various genes whose products maintain an appropriate range of phosphate concentrations within each cell. We identified previously a two component system, which consists of histidine kinase SphS and its cognate response regulator SphR, which regulates the expression of the phoA gene for alkaline phosphatase under phosphate-limiting c...

متن کامل

Butanol tolerance regulated by a two-component response regulator Slr1037 in photosynthetic Synechocystis sp. PCC 6803

BACKGROUND Butanol production directly from CO2 in photosynthetic cyanobacteria is restricted by the high toxicity of butanol to the hosts. In previous studies, we have found that a few two-component signal transduction systems (TCSTSs) were differentially regulated in Synechocystis sp. PCC 6803 after butanol treatment. RESULTS To explore regulatory mechanisms of butanol tolerance, in this wo...

متن کامل

Interrelation between cyanophycin synthesis, L-arginine catabolism and photosynthesis in the cyanobacterium Synechocystis sp. strain PCC 6803.

Ultrastructural and immunocytochemical investigations gave evidence that cyanophycin (multi-L-arginyl-poly-L-aspartate) granules accumulate in the cyanobacterium Synechocystis sp. strain PCC 6803 under nutrient deficient growth conditions, especially under phosphate limitation. Besides nutrient deficiency, growth of Synechocystis PCC 6803 on L-arginine or L-asparagine as sole N-source also led ...

متن کامل

Salt-dependent expression of glucosylglycerol-phosphate synthase, involved in osmolyte synthesis in the cyanobacterium Synechocystis sp. strain PCC 6803.

The cyanobacterium Synechocystis sp. strain PCC 6803 is able to acclimate to levels of salinity ranging from freshwater to twice the seawater concentrations of salt by accumulating the compatible solute glucosylglycerol (GG). Expression of the ggpS gene coding for the key enzyme (glucosylglycerol-phosphate synthase) in GG synthesis was examined in detail. Under control conditions, the GgpS prot...

متن کامل

Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor sigE.

The sigE gene of Synechocystis sp. PCC 6803 encodes a group 2 sigma factor for RNA polymerase and has been proposed to function in transcriptional regulation of nitrogen metabolism. By using microarray and Northern analyses, we demonstrated that the abundance of transcripts derived from genes important for glycolysis, the oxidative pentose phosphate pathway, and glycogen catabolism is reduced i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biochemistry and molecular biology

دوره 40 5  شماره 

صفحات  -

تاریخ انتشار 2007